A limit theorem for scaled eigenvectors of random dot product graphs

نویسنده

  • A. Athreya
چکیده

Received: date / Accepted: date Abstract We prove a central limit theorem for the components of the largest eigenvectors of the adjacency matrix of a finite-dimensional random dot product graph whose true latent positions are unknown. We use the spectral embedding of the adjacency matrix to construct consistent estimates for the latent positions, and we show that the appropriately scaled differences between the estimated and true latent positions converge to a mixture of Gaussian random variables. We state several corollaries, including an alternate proof of a central limit theorem for the first eigenvector of the adjacency matrix of an Erdős-Rényi random graph.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit distribution of the degrees in scaled attachment random recursive trees

We study the limiting distribution of the degree of a given node in a scaled attachment random recursive tree, a generalized random recursive tree, which is introduced by Devroye et. al (2011). In a scaled attachment random recursive tree, every node $i$ is attached to the node labeled $lfloor iX_i floor$ where $X_0$, $ldots$ , $X_n$ is a sequence of i.i.d. random variables, with support in [0,...

متن کامل

Almost Sure Functional Central Limit Theorem for Non-nestling Random Walk in Random Environment

We consider a non-nestling random walk in a product random environment. We assume an exponential moment for the step of the walk, uniformly in the environment. We prove an invariance principle (functional central limit theorem) under almost every environment for the centered and diffusively scaled walk. The main point behind the invariance principle is that the quenched mean of the walk behaves...

متن کامل

Almost sure functional central limit theorem for ballistic random walk in random environment

We consider a multidimensional random walk in a product random environment with bounded steps, transience in some spatial direction, and high enough moments on the regeneration time. We prove an invariance principle, or functional central limit theorem, under almost every environment for the diffusively scaled centered walk. The main point behind the invariance principle is that the quenched me...

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014